Авторизоваться

Город: Ульяновск
ул. Ленинского Комсомола 24

Телефон в Ульяновске 8 (919) 800-63-04

Синтезаторы частот

8 (919) 800-63-04

Цены на скупку в Ульяновске

Действительны
на 28.03.2024г.
Сайт и его материалы ни в коем случае не являются публичной офертой. Цены на товары и услуги, рассчитываются исходя из фактических показаний биржи LME, подробности уточняйте у сотрудников компании.
Синтезаторы частот
кол-во
ед.
б/у
новая

Полезная информация

Мы постарались собрать всю полезную информацию и часто задаваемые вопросы в этих блоках. Почитайте, возможно Вы найдете ответ на свой вопрос.
Скупка синтезаторов частот
Синтезатор частот — устройство для генерации периодических сигналов (гармонических колебаний, или электрических тактовых сигналов) с определёнными частотами с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность обычно достигается применением фазовой автоподстройки частоты или прямого цифрового синтеза (DDS) с использованием опорного генератора с кварцевой стабилизацией. Синтез частот обеспечивает намного более высокую точность и стабильность, чем традиционные электронные генераторы с перестройкой изменением индуктивности или ёмкости, очень широкий диапазон перестройки без каких-либо коммутаций и практически мгновенное переключение на любую заданную частоту.
Аналоговые синтезаторы
Основной функцией абсолютно любого синтезатора является преобразование опорного сигнала (reference) в требуемое количество выходных сигналов. Аналоговые синтезаторы (Direct Analog Synthesizers) реализуются путём смешения отдельных базовых частот с их последующей фильтрацией. Базовые частоты могут быть получены на основе низкочастотных (кварцевые и ПАВ-резонаторы) или высокочастотных (диэлектрический, сапфировый, волноводный, керамический резонаторы) генераторов посредством умножения, деления или фазовой автоподстройки частоты. Главным преимуществом аналоговых синтезаторов является чрезвычайно высокая скорость переключения, лежащая в микро или даже наносекундном диапазоне. Ещё одно преимущество: использование компонентов (например, смесителей) с исключительно малым уровнем собственных шумов по сравнению с источниками базовых частот. Т.е., шумы аналогового синтезатора определяются в основном шумами используемых базовых источников и могут быть весьма низкими. Основной недостаток указанной топологии – ограниченные диапазон и разрешение по частоте. Количество генерируемых сигналов можно увеличить, введя большее число базовых частот и/или смесительных каскадов. Однако такой подход требует большего числа компонентов и, следовательно, усложняет систему. Эффективным решением является использование цифрового синтезатора (Direct Digital Synthesizer – DDS) для увеличения минимального частотного шага, требуемого от аналоговой части.Еще одна серьезная проблема – множество нежелательных спектральных составляющих, которые генерируют смесительные каскады. Они должны быть тщательно отфильтрованы. Необходимо также обеспечить изоляцию переключаемых фильтров. Существует немало различных схем организации смесителей и фильтров, все они, как правило, требуют большого числа компонентов для обеспечения малого частотного шага и широкого диапазона частот. Таким образом, хотя аналоговые синтезаторы и предлагают исключительно высокую скорость перестройки и малые шумы, их использование ограничено из-за довольно высоких стоимостных характеристик.
Цифровые синтезаторы
В отличие от традиционных (аналоговых) решений, цифровые синтезаторы используют цифровую обработку для получения требуемой формы выходного сигнала из базового (тактового) сигнала. Сначала с помощью фазового аккумулятора создаётся цифровое представление сигнала, а затем генерируется и сам выходной сигнал (синусоидальной или любой другой желаемой формы) посредством цифро-аналогового преобразователя (ЦАП). Скорость генерации цифрового сигнала ограничена цифровым интерфейсом, но весьма высока и сопоставима с аналоговыми схемами. Цифровые синтезаторы также обеспечивают довольно малый уровень фазовых шумов. Однако основным достоинством цифрового синтезатора является исключительно высокое разрешение по частоте (ниже 1 Гц), определяемое длиной фазового аккумулятора. Главные недостатки – ограниченный частотный диапазон и большие искажения сигнала. В то время как нижняя граница рабочего диапазона частот цифрового синтезатора находится близко к нулю герц, его верхняя граница, в соответствии с теоремой Котельникова, не может превышать половины тактовой частоты. Кроме того, реконструкция выходного сигнала невозможна без фильтра нижних частот, ограничивающего диапазон выходного сигнала приблизительно до 40% тактовой частоты. Другая серьезная проблема – высокое содержание нежелательных спектральных составляющих из-за ошибок преобразования в ЦАП. С этой точки зрения цифровой синтезатор ведёт себя как частотный смеситель, генерирующий побочные составляющие на комбинационных частотах. В то время как частотное местоположение этих составляющих можно легко вычислить, их амплитуда гораздо менее предсказуема. Как правило, искажения более низкого порядка имеют наиболее высокую амплитуду. Тем не менее, искажения высокого порядка также приходится учитывать при разработке архитектуры конкретного синтезатора. Амплитуда паразитных спектральных составляющих увеличивается и с увеличением тактовой частоты, что также ограничивает диапазон генерируемых частот. Практические значения верхней границы диапазона находятся в районе от нескольких десятков до нескольких сотен мегагерц при уровне дискретных спектральных продуктов -50…-60 дБн. Очевидно, прямое умножение выходного сигнала частотного синтезатора невозможно из-за дальнейшей деградации спектрального состава. Существует много аппаратных и программных решений, призванных улучшить спектральный состав цифрового синтезатора. Аппаратные методы обычно основаны на переносе сигнала цифрового синтезатора вверх по частоте и его последующем делении. Этот метод уменьшает содержание нежелательных спектральных продуктов на 20 дБ/октаву. К сожалению, при этом также уменьшается диапазон генерируемых частот. Для расширения диапазона частот на выходе синтезатора приходится увеличивать число базовых частот и фильтров – подобно тому, как это делается в аналоговых схемах. Программные методы основываются на том, что частоты побочных искажений синтезатора являются функцией частоты дискретизации ЦАП. Таким образом, для каждой конкретной выходной частоты синтезатора побочные искажения могут быть сдвинуты по частоте (а в дальнейшем и отфильтрованы) путём изменения частоты дискретизации ЦАП. Этот метод особенно эффективен, если тактовые импульсы для ЦАП генерировать с использованием систем на основе ФАПЧ. Следует отметить, что программный метод работает достаточно эффективно для подавления искажений относительно малого порядка. К сожалению, плотность дискретных спектральных продуктов обычно увеличивается пропорционально их порядку. Поэтому программным методом удается отфильтровать искажения только до уровня -70…-80 дБн. Таким образом, из-за ограниченного диапазона частот и высокого содержания нежелательных спектральных продуктов цифровые синтезаторы редко используются для непосредственного генерирования СВЧ сигнала. В то же время их широко применяют в более сложных аналоговых и ФАПЧ системах, чтобы обеспечить высокое разрешение по частоте.
ЗОЛОТО
6528.04
СЕРЕБРО
72.97
ПЛАТИНА
2667.54
ПАЛЛАДИЙ
2896.78
ТАНТАЛ
16200
Данные на 28.03.2024г.
* цены на металлы указанны в рублях